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A variety of useful reactions are catalyzed by Pd(II) complexes.1

Although the first example was described by Murahashi over 20
years ago,2 only within the past few years has the potentially rich
catalytic asymmetric chemistry of Pd(II) received wide attention.3

In 1999 we reported that ferrocenyloxazoline palladacycles2 and
4 were excellent catalysts for asymmetric rearrangement of prochiral
allylic imidates to form enantioenriched allylic amides.4 Intramo-
lecular aminopalladation of the double bond is undoubtedly a central
event in this rearrangement,5 as it is in syntheses of numerous
nitrogen heterocycles.6 The use of ferrocenyloxazoline palladacycles
(FOP catalysts)2 and 4 to catalyze the asymmetric synthesis of
five-membered nitrogen heterocycles is disclosed herein.

We began by studying the formation of 4-vinyloxazolidin-2-ones
from readily available derivatives of (Z)-2-buten-1,4-diol (eq 1).7

To keep the leaving group and the anionic ligand of the catalyst
the same, the cyclization of allylicN-tosylcarbamate trifluoroacetate,
7, with FOP trifluoroacetate catalyst2 (generated in situ by
deiodination of1 with silver trifluoroacetate) was examined initially.
Although vinyloxazolidinone (S)-6acould be formed in up to 79%
ee (5 mol % catalyst, CH2Cl2, room temperature), the lability of
the allylic trifluoroacetate group made this synthesis impractical.
Bis-N-tosylcarbamate8 also cyclized in CH2Cl2 at room temperature
in the presence of 5 mol % of2 to provide (S)-6a (72% yield and
79% ee),8 comparable to the outcome achieved (95% yield and 78%
ee) in the cyclization of alcohol precursor9. Cyclizations of allylic
N-tosylcarbamate acetate5a were significantly better, providing
(S)-6a in 96% yield and 86% ee under similar conditions. Further
optimization showed that enantioselectivity was enhanced in more
polar solvents, a 1:1 mixture of CH2Cl2-MeNO2 being optimal in
terms of both yield and enantioselection (>95% yield and 91-
93% ee). Changing the anionic ligand by activating precatalyst1
with other silver salts was also examined; however, all silver salts
screened provided catalysts that were less satisfactory than2.9

As summarized in Table 1, the efficient, highly enantioselective
conversion of5a f (S)-6a can be accomplished under practical
conditions: substrate concentrations up to 2 M, reaction times at
room temperature of 10-20 h, and catalyst loadings as low as 0.5
mol %. Cyclization of 5a with the pseudoenantiomeric FOP
trifluoroacetate catalyst4 delivered (R)-6a in similar high yield and
enantioselectivity. Contributing to the practicality of this method,
iodide-bridged dimers1 and 3 are air- and moisture-stable pre-
catalysts, which are activated in situ by reaction with silver
trifluoroacetate.10 High yields and enantioselectivities were realized
in cyclizations ofN-arylsulfonylcarbamates containing a range of
aryl substituents (Table 1). The lack of reaction of substrates such
asp-nitrophenylcarbamate10 under identical conditions suggests
that a highly acidic nitrogen nucleophile is required.11 Also required
is theZ configuration of the starting allylicN-arylsulfonylcarbamate,
as theE stereoisomer of5a was transformed extremely slowly at
room temperature (22% yield after 4 days, 5 mol % of2) to give
(R)-6a of moderate enantiopurity (65% ee). The absolute config-
uration of (S)-6a was established by conversion to (S)-4-vinylox-
azolidin-2-one;12 the absolute configurations of6b-6e were
assigned in analogy.

It is most convenient to form the allylicN-arylsulfonylcarbamate
in situ by reaction of an allylic alcohol with an arylsulfonyl
isocyanate. This modification is particularly useful with tertiary
allylic alcohols whose derived allylicN-arylsulfonylcarbamates are
prone to eliminate. Using this procedure, spirocyclic 4-vinylox-
azolidin-2-ones13a and13b were prepared in high enantiopurity
and good overall yield from cyclohexanone andN-tert-butoxyoxy-
carbonyl-4-piperidone (Scheme 1). To minimize competing ioniza-
tion of the tertiary allylic N-tosylcarbamate intermediate, the
cyclization step was carried out in CH2Cl2 using 5 mol % of the
FOP trifluoroacetate catalyst. The high enantioselectivity (97-99%
ee) realized in these reactions appears to be a general feature of
catalytic asymmetric cyclizations of tertiary allylicN-tosylcarbam-

Table 1. Catalytic Asymmetric Synthesis of
3-Arylsulfonyl-4-vinyloxazolidin-2-ones (6a-e)

concentration (M) catalyst (mol %) product yield (%)b ee (%)b,c

1.0 2 (5.0) (S)-6a 96 91
2 (1.0) 91 90
2 (0.5) 86 91

2.0 2 (5.0) 98 93
0.2 98 92

4 (5.0) (R)-6a 80 92
2 (5.0) 6b 98 92

6c 88 91
6d 91 89
6e 98 92

a Reactions conducted in 1:1 CH2Cl2-MeNO2 at room temperature for
10-20 h; the starting (Z)-allylic carbamate was>98% isomerically pure.
b Mean of 2-4 experiments.d HPLC analysis using a Chiracel OD-H
column ((2%).
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ates with FOP trifluoroacetate catalysts, as14 was converted to
vinyloxazolidin-2-one15of 96% ee under identical conditions.13-15

Enantioenriched 2-pyrrolidinones and 2-imidazolidinones can be
prepared in similar fashion (Scheme 2). The absolute configuration
of pyrrolidinone19 was secured by converting this product to the
unnatural enantiomer of the powerful GABA inhibitor vigabatrin
20,16 whereas the absolute configuration of18 was secured by
single-crystal X-ray analysis.14

At least two general mechanisms can be considered for these
catalytic asymmetric cyclization reactions (Scheme 3).17 In one,
the new C-N bond would be formed by aminopalladation of the
alkene (30 f 32). In the other, it would be formed by insertion of
the alkene into the Pd-N bond of 31.18 Alternative pathways
involving η3-allyl species and palladacyclic Pd(II) and Pd(IV)
intermediates, or a conventional Pd(0)/Pd(II) catalytic cycle (the
Pd(0) catalyst being some degradation product of the original
palladacycle),19 are unlikely.20

In summary, a new catalytic asymmetric synthesis of five-
membered nitrogen heterocycles was developed. This synthesis
employs palladacyclic Pd(II) catalysts and likely proceeds by a
novel mechanism. We anticipate additional applications of FOP
catalysts and other chiral Pd(II) complexes for catalytic asymmetric
construction of heterocycles and carbocycles.
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