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A variety of useful reactions are catalyzed by Pd(ll) compléxes. Table 1. Catalytic Asymmetric Synthesis of
Although the first example was described by Murahashi over 20 3-Arylsulfonyl-4-vinyloxazolidin-2-ones (6a—e)

years agad,only within the past few years has the potentially rich  concentration (M) catalyst (mol %) product yield (%)° ee (%)
catalytic asymmetric chemistry of Pd(ll) received wide attention. 1.0 2(5.0) ©-6a 96 91
In 1999 we reported that ferrocenyloxazoline palladacy2lesd 2(1.0) 91 90
4 were excellent catalysts for asymmetric rearrangement of prochiral 20 % Egg; gg g%
allylic imidates to form enantioenriched allylic amidemtramo- 0.2 98 92
lecular aminopalladation of the double bond is undoubtedly a central 4(5.0) R)-6a 80 92
event in this rearrangemehtas it is in syntheses of numerous 2(5.0) 22 gg gi
nitrogen heterocyclésThe use of ferrocenyloxazoline palladacycles 6d 91 89
(FOP catalystsp and4 to catalyze the asymmetric synthesis of 6e 98 92

five-membered nitrogen heterocycles is disclosed herein. a8 Reactions conducted in 1:1 GEl,—MeNO, at room temperature for

10-20 h; the starting4)-allylic carbamate was 98% isomerically pure.

) ) OMe bMean of 2-4 experiments? HPLC analysis using a Chiracel OD-H
t_Bu{%ﬁlM% Megsgj\ﬂ column @2%).
PdF o JPdZ Et . . - . . .
Xwé é””‘%\gx As summarized in Table 1, the efficient, highly enantioselective
1 x2=| 3 Xo| conversion ofsa — (§)-6a can be accomplished under practical
2: X=0COCF3 4; X = OCOCF, conditions: substrate concentrations up to 2 M, reaction times at

room temperature of 2020 h, and catalyst loadings as low as 0.5

mol %. Cyclization of 5a with the pseudoenantiomeric FOP

trifluoroacetate cataly<t delivered R)-6ain similar high yield and
t enantioselectivity. Contributing to the practicality of this method,
iodide-bridged dimerd and 3 are air- and moisture-stable pre-
catalysts, which are activated in situ by reaction with silver
trifluoroacetaté? High yields and enantioselectivities were realized
in cyclizations ofN-arylsulfonylcarbamates containing a range of
aryl substituents (Table 1). The lack of reaction of substrates such
asp-nitrophenylcarbamat&0 under identical conditions suggests

We began by studying the formation of 4-vinyloxazolidin-2-ones
from readily available derivatives oZ)-2-buten-1,4-diol (eq 1).
To keep the leaving group and the anionic ligand of the catalys
the same, the cyclization of allylN-tosylcarbamate trifluoroacetate,
7, with FOP trifluoroacetate catalys2 (generated in situ by
deiodination ofl with silver trifluoroacetate) was examined initially.
Although vinyloxazolidinone$-6a could be formed in up to 79%
ee (5 mol % catalyst, Cl,, room temperature), the lability of
the allylic trifluoroacetate group made this synthesis impractical. . g o g )
Bis-N-tosylcarbamat8 also cyclized in CHCI, at room temperature Fhat a h'ghly aC|d|.c nitrogen nugleophllg is requiréaiso required
in the presence of 5 mol % & to provide 6)-6a (72% yield and is theZ conflgur_atlon of the starting allylibl-arylsulfonylcarbamate,
79% ee) comparable to the outcome achieved (95% yield and 78% as thekE stereoisomer oSa_was transformed extremely sIov_va at
ee) in the cyclization of alcohol precurs@arCyclizations of allylic room temperature (22% Y'eld gfter 4 days, 5 mol %&pto give .
N-tosylcarbamate acetafim were significantly better, providing ~ (F)-6@ of moderate enantiopurity (65% ee). The absolute config-
(9-6ain 96% yield and 86% ee under similar conditions. Further Uration of §-6awas established by conversion §-4-vinylox-
optimization showed that enantioselectivity was enhanced in more azo_lldln-ZTonel;z the absolute configurations o8b—6e were
polar solvents, a 1:1 mixture of GBl,—MeNO, being optimal in aSS|gned In analogy.
terms of both yield and enantioselectiong5% yield and 9% . It is most conv_enlent to form tl_we aIIyIN-arylgulfonylcarbamate
93% ee). Changing the anionic ligand by activating precatdlyst in situ by rea(_:tlon of_an_ally_hc alcphol with an ar_ylsulfopyl
with other silver salts was also examined; however, all silver salts isocyanate. This modification is particularly useful with tertiary

screened provided catalysts that were less satisfactory2fian allylic alcohols whose derived allylid-arylsulfonylcarbamates are
prone to eliminate. Using this procedure, spirocyclic 4-vinylox-

0 azolidin-2-onesl3a and 13b were prepared in high enantiopurity
NHR' 0.5-5mol% 2 J and good overall yield from cyclohexanone axdert-butoxyoxy-
O:<O—/:\—OH2 23°C ? '\ﬁozAr @ carbonyl-4-piperidone (Scheme 1). To minimize competing ioniza-
, , — tion of the tertiary allylic N-tosylcarbamate intermediate, the
Sa-e:R =SOALR =Ac (8)-6a: Ar= p-Tol cyclization step was carried out in GEl, using 5 mol % of the
7:R' =Ts, R“ = COCF; 6b: Ar=Ph FOP trifl | The hiah . | .. 0
8 R'=Ts. K2 = CONHTs 6¢: Ar = 0-MeCgHs tri _uorogcetate cata ys_t. e high enantioselectivity- @6
9:R'=Ts,RZ=H 6d: Ar = p-CICeH, ee) realized in these reactions appears to be a general feature of
10:R'= p-NO,CeHs, R? = Ac Be: Ar = p-FCaHa catalytic asymmetric cyclizations of tertiary allyli¢-tosylcarbam-
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Supporting Information Available:

Preparation of representative

rearrangement substratesa( 12a and 16), representative catalytic
asymmetric cyclizations (formation o8)-6a, 133 and18), copies of
HPLC traces used to determine enantiopurity, and copie$iaind
13C NMR spectra for all new compounds (PDF). This material is
available free of charge via the Internet at http:/pubs.acs.org.
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